[中科院]贝叶斯网络[60课时]-20讲-吴健康
—&mdash星盟课大王网,一个为您创造财富的地方!
贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础。贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayesian network)是为了解决不定性和不完整性问题而提出的,它对于解决复杂设备不确定性和关联性引起的故障有很大的优势,在多个领域中获得广泛应用。
贝叶斯网络又称信度网络,是Bayes方法的扩展,是目前不确定知识表达和推理领域最有效的理论模型之一。从1988年由Pearl提出后,已经成为近几年来研究的热点.。一个贝叶斯网络是一个有向无环图(Directed Acyclic Graph,DAG),由代表变量节点及连接这些节点有向边构成。节点代表随机变量,节点间的有向边代表了节点间的互相关系(由父节点指向其子节点),用条件概率进行表达关系强度,没有父节点的用先验概率进行信息表达。节点变量可以是任何问题的抽象,如:测试值,观测现象,意见征询等。适用于表达和分析不确定性和概率性的事件,应用于有条件地依赖多种控制因素的决策,可以从不完全、不精确或不确定的知识或信息中做出推理。
在线下载列表
相关推荐
留言与评论(共有 0 条评论) |